FMODBを活用したリガンドータンパク質間相互作用解析

半田佑磨 星薬科大学

チュートリアルの目的と内容

■目的

- ・メインプロテアーゼ-リガンド複合体の相互作用解析
- 内容①
 - ・FMO計算によるタンパク-低分子複合体の解析例
- 内容②
 - ・FMODB上での計算結果の確認
 - ・FMODBからPIEDAデータのダウンロード
 - ・PIEDA成分の解釈
 - ・BioStation Viewerを用いた結果の確認

チュートリアルの目的と内容

■目的

・メインプロテアーゼ-リガンド複合体の相互作用解析

- 内容①
 - ・FMO計算によるタンパク-低分子複合体の解析例
- 内容②
 - ・FMODB上での計算結果の確認
 - ・FMODBからPIEDAデータのダウンロード
 - ・PIEDA成分の解釈
 - BioStation Viewerを用いた結果の確認

2'-O-ribose methyltransferase

(2 entries)

FMODB上での操作

BSVを用いた結果の確認

PIEDA成分の解釈

COVID-19関連タンパク質

Η.

・ COVID-19の治療薬の探索

Spike protein

(81 entries)

Nucleocapsid protein

(16 entries)

・ SARS-CoV-2の増殖におけるMproの機能

研究背景と手法

1.ドッキング

FMOスコアリング

3.MD計算

4.FMO計算

静的構造のIFIE vs. 動的構造のIFIE

1.ドッキング

FMOスコアリング

3.MD計算

4.FMO計算

NelfinavirとMproの主な相互作用

Residue Name	IFIE	ES	DI
Asn142	-4.18±3.50→-14.63±4.94	$-1.73 \pm 2.59 \rightarrow -10.73 \pm 6.72$	$-3.31 \pm 2.24 \rightarrow -11.04 \pm 2.74$
Met165	-12.87 ± 2.33	-11.38 ± 2.07	-4.10 ± 1.57
Glu166	-49.56 ± 10.92	-54.00 ± 14.66	-6.59 ± 2.36
Gln189	-45.19 ± 4.57	-46.99 ± 7.84	-14.13 ± 1.47

チュートリアルの目的と内容

■目的

- ・メインプロテアーゼ-リガンド複合体の相互作用解析
- 内容①
 - ・FMO計算によるタンパク-低分子複合体の解析例
- 内容②
 - ・FMODB上での計算結果の確認
 - ・FMODBからPIEDAデータのダウンロード
 - ・PIEDA成分の解釈
 - BioStation Viewerを用いた結果の確認

FMODB上での操作

BSVを用いた結果の確認

PIEDA成分の解釈

FMODBのHP

・FMODBのホームページ

・FMODBの構造検索画面

Category	News: FMO data for	
COVID-19(722)	COVID-19 related p	roteins
- Papain like protease(64)		Modified from the minimal
- Main protease(390)		by DSG @RCSB PDB
- ADP ribose phosphatase(20)		
 - RNA dependent RNA 		
polymerase(21)	Search Sample	
Endoribonuclease(12)		
2-O-ribose	Keyword Search: COVID-19	Set Value Of Innu
methyltransferase(7)	PDB ID Search: 1ERE	Set Value Of Input
- Spike protein(107)	EMODB ID Search: 5P4NP	Set Value Of Inpu
 Nucleocapsid protein(17) 	UniProt ID Search: P03372	Set Value Of Inpu
- Helicase(61)	Keyword Search(Target): Estrogen recentor alpha	Set Value Of Inpu
 Other SARS-Cov-2(26) 	Keyword Search(Ligand): NHI	Set Value Of Inpu
V rev All Entries (2562)	Blast Search: Sequence of 3RIN / E-Value Cutoff E-148	Set Value Of Inpu
A TBY AILEITUIGS(3002)		

▶ ID検索だけでなくキーワード検索も可能
 ▶ カテゴリー検索も可能
 ▶ 今回はID検索(6W63)で実行する。

FMODB(<u>https://drugdesign.riken.jp/FMODB/</u>)

FMODB上での操作

BSVを用いた結果の確認

PIEDA成分の解釈

Web上で解析

・DB上でまとめられている情報

- \checkmark Modeling method
- ✓ FMO calculation
- ✓ Total energy
- ✓ Ligand binding energy

・DB上で行える解析

Base fragment(s) of PIEDA/IFIE	Single fragment Multi fragments
	392(A:401:X77)Lignad
	Charge [e] FCHARGE : 0 / q_Mulliken : 0.021 / q_NPA : 0.039
Distance from base fragment(s) [A]	Dist 4.5
Interaction energy by IFIE and	Total > 10 ES > EX >
[kcal/mol]	CT+mix > DI(MP2) >
Fragment charge [e]	FCHARGE v q_Mulliken v
Desider	Du: #
Residue	Res #
Sort	ascending v
Graph Options	X Axis Label Residue Number -
	Y Axis Max Y Axis Min
	Display R ES R EX CT+mix R DI/MP2)

・DB上で表示される相互作用グラフ

4.5Å以内

4.5Å以内かつ|Total IFIE|>10

FMODB上での操作

BSVを用いた結果の確認

PIEDA成分の解釈

データのダウンロード

・DBからデータをダウンロードする方法

FMODB ID: 8JVKY

Calculation Name: 6W63-A-Xray108

Preferred Name:

Target Type:

Ligand Name: n-(4-tert-butylphenyl)-n-[(1r)-2-(cyclohexylamino)-2-oxo-1-(pyridin-3-yl)ethyl]-

1h-imidazole-4-carboxamide

ligand 3-letter code: X77

PDB ID: 6W63

Chain ID: A

ChEMBL ID:

UniProt ID: P0DTD1

Base Structure: X-ray

Registration Date: 2020-04-16

Reference: T. Ohyama, K. Kamisaka, C. Watanabe, T. Honma et. al., FMO-based interaction energy analysis of SARS-Cov-2 main protease and ligand complexes, To be published. **DOI:**

LILI IFIE MAP

・ダウンロードしたデータを解凍して得られるもの

✓ PDBファイル
 ✓ AJFファイル
 ✓ CPFファイル
 ✓ OUTファイル
 ✓ LOGファイル

名前

main_protease_OptH_ligand-tether1_Amber10EHT_SelectedSolv_StrPrep00_6W63_A_...
 main_protease_OptH_ligand-tether1_Amber10EHT_SelectedSolv_StrPrep00_6W63_A_...

伊皮 形式分子ファイル AJF ファイル CPF ファイル OUT ファイル Log file ソース ファイル

FMODB上での操作

BSVを用いた結果の確認

PIEDA成分の解釈

BSVを用いた解析-値の取り出し-

BioStation Viewerを立ち上げる。デスクトップのアイコンなどから可能。 BioStation Viewerに、cpfファイルをドロップ。 ※BioStation Viewer Lite Open1.0 rev.23 Binds 017 b006 左側「A鎖」を展開して一番下にある「X77」をクリック →リガンドが選択される。 右側のMonitor>PIEDA Listを選択

File(F)									
Value:P	IEDA								
Base fr	agment(I) X77401 (392	9						
residue	fragment	(J) total	ES	EX	CT+mi×	DI	q(I->J)	main	distand
		[kcal/mol]	[kcal/mol]	[kcal/mol]	[kcal/mol]	[kcal/mol]	(e) co	nponent	(Å)
SER1	(1)	-0.015311	-0.015311	0.000000	0.000000	0.000000	0.000000	ES	33.6882
GLY2	(2)	0.017545	0.017545	0.000000	0.000000	0.000000	0.000000	ES	30.4893
PHE3	(3)	0.006547	0.006547	0.000000	0.000000	0.000000	0.000000	ES	24.8403
ARG4	(4)	-0.681387	-0.681387	0.000000	0.000000	0.000000	0.000000	ES	23.0443
LYS5	(5)	-1.129172	-1.129172	0.000000	0.000000	0.000000	0.000000	ES	16.5104
MET6	(6)	0.037467	0.037467	0.000000	0.000000	0.000000	0.000000	ES	20.1032
ALA7	(7)	0.025057	0.025057	0.000000	0.000000	0.000000	0.000000	ES	17.30004
PHE8	(8)	-0.119012	-0.119012	0.000000	0.000000	0.000000	0.000000	ES	19.2054
PR09	(9)	0.103926	0.103926	0.000000	0.000000	0.000000	0.000000	ES	19.7654
SER10	(10)	-0.011495	-0.011495	0.000000	0.000000	0.000000	0.000000	ES	17.8082
GLY11	(11)	0.054339	0.054339	0.000000	0.000000	0.000000	0.000000	ES	19.6614
LYS12	(12)	-0.802508	-0.802508	0.000000	0.000000	0.000000	0.000000	ES	22.3071
VAL13	(13)	-0.049909	-0.049909	0.000000	0.000000	0.000000	0.000000	ES	16.1788
GLU14	(14)	1.522531	1.522531	0.000000	0.000000	0.000000	0.000000	ES	17.5082
GLY15	(15)	-0.005722	-0.005722	0.000000	0.000000	0.000000	0.000000	ES	17.7790
CYS16	(16)	-0.177777	-0.177777	0.000000	0.000000	0.000000	0.000000	ES	17.5031
MET17	(17)	-0.059670	-0.059670	0.000000	0.000000	0.000000	0.000000	ES	11.7641
VAL18	(18)	-0.199830	-0.199830	0.000000	0.000000	0.000000	0.000000	ES	11.8045
GLN19	(19)	0.745651	0.745651	0.000000	0.000000	0.000000	0.000000	ES	8.3519
VAL20	(20)	-0.310638	-0.310638	0.000000	0.000000	0.000000	0.000000	ES	7.6435
THR21	(21)	-0.387981	-0.387981	0.000000	0.000000	0.000000	0.000000	ES	6.4937
CYS22	(22)	0.431778	0.431778	0.000000	0.000000	0.000000	0.000000	ES	7.4986
GLY23	(23)	-0.713723	-0.713723	0.000000	0.000000	0.000000	0.000000	ES	7.8544
THR24	(24)	0.432433	0.432433	0.000000	0.000000	0.000000	0.000000	ES	7.7041
THR25	(25)	-0.300026	0.428038	1.003948	-0.452655	-1.279357	0.000513	DI	2.4764
THR26	(26)	-0.374058	-0.052988	0.000369	-0.042989	-0.278451	0.000046	DI	3.9324
LEU27	(27)	-4.315620	-1.820700	1.970664	-1.581629	-2.883955	0.017575	DI	2.2047
ASN28	(28)	-1.989286	-1.778841	0.003843	-0.054548	-0.159740	0.000278	ES	3,9609
GLY29	(29)	-0.408446	-0.408446	0.000000	0.000000	0.000000	0.000000	ES	7.4435
LEU30	(30)	0.221139	0.221139	0.000000	0.000000	0.000000	0.000000	ES	10.3301
TRP31	(31)	-0.237811	-0.237811	0.000000	0.000000	0.000000	0.000000	ES	13.9054
LEU32	(32)	0.075173	0.075173	0.000000	0.000000	0.000000	0.000000	ES	16.7608
ASP33	(33)	0.356239	0.356239	0.000000	0.000000	0.000000	0.000000	ES	20.0891
ASP34	(34)	0.160488	0.160488	0.000000	0.000000	0.000000	0.000000	ES	21.4011
VAL35	(35)	-0.109809	-0.109809	0.000000	0.000000	0.000000	0.000000	ES	17.4378
VAL36	(36)	0.145795	0.145795	0.000000	0.000000	0.000000	0.000000	ES	12.3815
TYR37	(37)	-0.264691	-0.264691	0.000000	0.000000	0.000000	0.000000	ES	13.6147
CYS38	(38)	0.349109	0.349109	0.000000	0.000000	0.000000	0.000000	ES	8.1205
PR039	(39)	-0.355549	-0.355549	0.000000	0.000000	0.000000	0.000000	ES	5.6910
ARG40	(40)	0.422885	0.422885	0.000000	0.000000	0.000000	0.000000	ES	6.3905
HIS41	(41)	-13.173525	-7.780318	5.642948	-2.631475	-8.404680	0.010318	DI	2.3208
VAL42	(42)	-3,243902	-2,668691	0.004049	-0.153401	-0.425859	0.000655	ES	3,6572
ILE43	(43)	0.860832	0.961000	-0.000173	-0.004234	-0.095761	0.000011	ES	4.6452
LVS44	(44)	0.556160	1.323328	0.380866	-0.165204	-0.982830	-0.001441	ES	2.6122

PIEDA成分の解釈

BSVから得られたPIEDA情報の解釈

基本的に構造を見なければ PIEDAの解釈はできない

構造のどの部分に注目して 解釈をすればよいかが分かる

BSVを用いた解析-相互作用の可視化-

- 1.画面右のMonitor>PIEDA(1:1)を選択
- 2.図に示すように選択し、エネルギーの強さによって各成分ごとに色の濃淡をつける
- 3. 色の濃い残基、あるいは計算結果に基づいて確認したい残基を選択してStick表示にする

Value		
O Total IFI	E (solvent[O es+np	●es ○np]) - <mark>-</mark> +
Individual co	mponent	
C Electronic	rostatic(ES)	- 📕 +
O Exch	enge repulsion(EX)	- 📕 +
O Charg	ge transfer+mix(CT+mix)	- 🗧 + 📕
O Dispe	ersion(DI)	- <mark> </mark> +
8 30hs	et[⊖es+np ⊛es	O np] +
Main compo	nent	
O Color	gradation based on indiv	ridual component
Color	granation based on total	IFIE
Color(-)	Min -20.0	Max 0.0
Color(+)	Min 0.0	Max 20.0
	01	.og 🖲 Linear
Threshold	0.0	
Color	Color(-,+) 💌	default
	Apply	Close

FMODB上での操作

BSVを用いた結果の確認

PIEDA成分の解釈

FMO計算によるタンパク-低分子複合体の解析例

では実際にやってみましょう

BioStation Viewerの基本操作

■ 環境

- BioStation Viewer
 - https://fmodd.jp/biostationviewer-dl/
- 基本操作
 - 分子の回転
 - 左クリックを押しながらカーソルを動かす
 - 分子の平行移動
 - 右クリックを押しながらカーソルを動かす
 - 分子の拡大
 - 中央ボタンを押しながらカーソルを上下に動かす

- その他操作
 - 選択したリガンドをstick表示に
 - 選択した状態で右クリック>Model/Color
 - 選択した原子を中心に設定
 - Tool>Set Center
 - IFIE(PIEDA)で色付け
 - Monitor > PIEDA(1:1)
 - アミノ酸残基をstick表示
 - 選択した状態で右クリック>Model/Color
 - タンパク質のリボンを表示
 - Model>Structure>Solid Ribbon

チュートリアルまとめ

- ✓ PIEDA分割による相互作用が視覚的に理解できる
- ✓ 分子間相互作用が具体的な数値に基づいて議論できる

■ターゲット エストロゲン受容体 (Estrogen Receptor : ER) β

ERのサブタイプのひとつであり、17β-Estradiol (EST) との 親和性は ERαと同等であるが、Genistein (GEN) などの 植物エストロゲンとの親和性が高い。

	ERa IC50(nM)	ERβ IC50(nM)
17β-Estradiol	3.2±1.0	3.6±1.6
Genistein	395±181	10土4

Malamas, M.S., Manas, E.S., McDevitt, R.E., Gunawan, I., Xu, Z.B., Collini, M.D., Miller, C.P., Dinh, T., Henderson, R.A., Keith Jr., J.C., Harris, H.A. J.Med.Chem. 47: 5021-5040 (2004)

>> リガンドのサブタイプ選択性を解析する。
FMODBに登録されたデータを用いて、受容体ーリガンドの相互作用パターンに基づくクラスター解析を行う。

■ ERβの複合体としてPDB (Protein Data Bank) に登録 されているリガンドが23個ある。

網羅的に解析する。

VISCANA

(Visualized Cluster Analysis of Protein-Ligand-Interaction)

- 相互作用エネルギー (IFIE) に基づいたクラスター解析により、受容体結合にお けるリガンドの類似性を抽出する手法である。
- リガンド-アミノ酸残基間相互作用の類似性を距離として定義し、階層的クラスター解析を行うことができる。
- リガンド同士の類似性の距離が近いほどフラグメントとの結合の類似性が高い。

サンプル例題のERβ複合体をターゲットとし、 ソフトに BioStationViewer を、手段に VISCANA を用いて解析することで、 リガンドを受容体との相互作用パターンによって分類する。

S. Amari et al., J. Chem. Inf. Model. 46 (2006) 221-230.

I. 計算結果のファイルをまとめておくための新しいディレクトリを作成しておく。

II. FMODBより、 Category – X-ray All Entries – Nuclear receptor: ERb を 選択する。

Ca	ategory
<u>CC</u>	VID-19(250)
F	Papain like protease(18)
F	Main protease(170)
F	Nsp9 RNA binding protein(6
H	ADP ribose phosphatase(8)
F	RNA dependent RNA
pol	<u>ymerase(6)</u>
F	Endoribonuclease(3)
F	<u>2'-O-ribose</u>
me	thyltransferase(2)
F	Spike protein(14)
F	Nucleocapsid protein(9)
Ĺ	Other SARS-CoV-2(14)
<u>X-r</u>	ay All Entries(1523)
F	Kinase: p38(188)
ŀ	Kinase: Aurora(46)
ŀ	Kinase: CHK1(43)
ŀ	Nuclear receptor: ERa(60)
F	Nuclear receptor: ERb(76)
Ĺ	ApoStructure(755)

NINAD ALL Entrine (40.4)

III. SortでRegistration data: 个Oldest to Newest を指定する① → Submit②

____check / uncheck all items on this page

<u>上から登録の新しい順にソートされる。</u>

https://drugdesign.riken.jp/FMODB/

- IV. Displaying results: 10を指定しデータを10個表示にする①。
- V. Check Point File (checked items up to 10 data)にチェックをつける② → Submit③

表示中のデータ10個が一括でダウンロードされる。

- VI. ダウンロードしたzipファイルを開き、解凍する。
- VII. Next>をクリックし2ページ目の10個のデータを表示したら、同様に手順V. VI. の操作で10個のデータをダウンロード後zipファイルを解凍する。

VIII. 再度Next>をクリックし3ページ目の10個のデータを表示したら、上から3個のデータ(PDB ID: 1U3Q, 1QKM, 1L2J)にチェックをつける。

Search Result: 76 Hi 10 50 100	ts	Currently	/ showing:	21 - 30	Page: 3/8	< Back	Next >	Displaying results:
 X18ZP FMODB ID: X18ZF Calculation Name Preferred Name: PDB ID: <u>1U3Q</u> Chain ID: C UniProt ID: <u>Q9273</u> Base Structure: X Registration Date Reference: Modeling method Optimization: M Restraint: OptH Procedure: Auto FMO calculation FMO method: F FMO2-HF: Total FMO2-MP2: Total FMO2-MP2: Total 	1 -ray 2017-06- IOE:Ambe p-FMO pro MO2-MP2 energy (I al energy energy	Xray11 23 vr10:EHT vtocol ver. 1 v/6-31G(d) hartree): -6 (hartree):	.2017021 06399.33 -96669.646	505			Ligand Interaction	H H Glu 305
IFIE [kcal/mol]	ES	PIEDA	[kcal/mol] CT+mix	DI(MP2)	Charge transfer val	ue [e]		

<u>チェックしたデータは背景が青色になる。</u>

-51.999

0.095

-113.931

-98.803 72.440 -35.567

IX. DownloadでChecked itemsを指定し①、Check Point File (up to 10 IDs)にチェックをつける② → Submit③

	Sort Registration date: ↑ Oldest to Newest Display only checked items (2)
U	Download Checked items IFIE Data (csv file) All Calculation Data (zip files; up to 10 IDs) Check Point File (up to 10 IDs)
	Graph V ES V EX V CT+mix V DI(MP2)
	Submit

選択したデータ3個が一括でダウンロードされる。

X. ダウンロードしたzipファイルを開き、解凍する。

XI. 解凍したファイル内の.cpfファイル計23個を、手順 I. で作成したディレクトリに 移動させ一つにまとめる。

■ VISCANAの操作手順

I. Monitor → VISCANA を選択する。

II. CPF Data Directory... で cpfファイルをまとめた

■ VISCANAの操作手順

- III. Data Select でクラスタリングに用いる相互作用エネルギーを指定する。 今回は IFIE-MP2 を指定する①。
- IV. Cluster Analysis で以下の指定をする。
- ✓ Base Fragment をリガンドのフラグメント番号にする②。
- ✓ Data Selectで設定したエネルギーの

 ○ 範囲 ○ 合計の範囲 を指定する③。 	1	Data Analysis CPF Data Directory C:\Use set) Desktop\cpf_sample\ERb Data Select User Analysis IFIE MP2 Ease Fragment 231 v (1-232)	
→ Apply④	l	O PIEDA ES IIIE/PIEDA(X) Color(-,-) Image: Color (-,-) Im	

選択性のない17β-Estradiolと選択性のあるGenisteinは別のクラスターに含まれる。

Viewer Filter で Base Fragment からの距離を指定する① → Filter②

<u>指定した距離内のフラグメントとの相互作用バンド</u> のみを表示することができる。

CANA	Load
default Min -30 Max 30 Min -150 Max 0	View Filter From Base Frogment Distance [Å] § 15 Distance Type Nearest Interatomic Filter 3D Model View

■ クラスタリングの結果の詳細な解析

I. Data を Analysis に変え①、Cluster No の On にチェックをつける②。

<u>黄色の破線はカーソルを動かすと連動する。</u> <u>破線の位置でクラスター分割したときに割り当てられるクラスター番号が</u> <u>リガンド名左に表記される。</u>

■ クラスタリングの結果の詳細な解析

II. Cluster #1 にチェックをつけ③、クラスターの分岐に破線を置き白線との交点をクリック④。

III. 同様にCluster #2 にチェックをつけ⑤、白線と破線の交点をクリックする⑥

<u>Result(fragment#, value)の欄に、クラスタリングに寄与したフラグメント番号 (#)と</u> 寄与の度合いを示す値 (value) が表れる。

■ 結果の図の保存

File①から Save Image を選ぶ。

- A) Save In: 保存先ディレクトリ
- B) File Name: ファイル名.png
- C) File of Type: Image file (.jpg, .tif, .png) を指定
- \rightarrow Save⁽²⁾

<u>VISCANAの図がファイルとして保存される。</u>

■ クラスタリング結果をもとに相互作用を確認

 リガンドと fragment: 210 との相互作用バンドを指定し①(黄色が消える)、 再度AnalysisをDataに変える②。

II. 3D Model View $(3)_{\circ}$

CPF Data D	irectory C:\Users\yseki\Desktop\ERb_VISCANA	Load
Data Select IFIE PIEDA ES	Cluster Analysis Base Fragment 231 V (1-232) IFIE/PIEDA(X) Color(-,+) V default Min 30 Max 30 Sum over X Cluster Method furthest neighbor V	View Filter From Base Fragment Distance [A] ≤ 15 Distance Type Nearest Interatom Filter

<u>Viewerに複合体構造が</u> 読み込まれる。

Ligand clustering for $\text{ER}\beta$

○ H475 との相互作用の有無

